Microfluidics is of interest to many scientists and engineers from many disciplines because it is a toolbox from which they can investigate basic questions in their respective fields. In particular, the field has led to new studies of small-scale fluid flows, especially those dominated by surface effects, which is crucial for understanding electrokinetics, chemical reactions and phase changes, and multiphase systems, including those involving dispersed liquid and gas phases, suspended particles, cells, vesicles, capsules, etc. The lower length scale of these kinds of flows concerns nanoscale manipulation of objects such as DNA or nanoparticles, nanofabrication of surfaces, studies of the flow within nanometers of substrates, etc.

Microfluidics has also given rise to technologies because it enables design and implementation of new devices for sensing, detection, measurement, materials characterization, combinatorial discovery, cellular-scale manipulation, miniaturization of reactors, etc. The fact that these systems are small, cheap, physically flexible, portable, multifunctional, and, when they are working, produce measurements quickly, offers many new avenues for innovation.

This focus issue highlights contributions from around the world that explore research directions inspired by the manifold possibilities of microfluidics. In particular, the papers include reports of single-phase flows that are driven by electrical fields, so-called electrokinetics. Although the field has its origins in the 19th century, if not even earlier, new theoretical ideas are required to understand dynamics close to charged surfaces, and new applications of the basic ideas are being introduced for driving flows and manipulating suspended particles (e.g. DNA). In addition, the subject of mixing and the study of transport processes coupling diffusion and convection is a necessary component of many studies aimed at lab-on-a-chip environments. At the other extreme from mixing there is interest in the precise placement of particles in microfluidic flows. Although the majority of microfluidic studies focus on the consequences of low Reynolds number motions, the flows can frequently have large enough particle-scale Reynolds numbers that inertial effects can appear. Also, chemical gradients, via osmotic effects, can be significant, and, where surface effects are significant, particle deposition can occur.

Multiphase flows constitute another major area of microfluidic research. For example, there has been great interest in using drops as individual containers since both the chemical composition inside and outside the drop can be controlled. Also, the interface between the two phases provides both a natural chemical barrier (surfactants are generally added to reduce the probability of coalescence between drops) as well as potentially being the site for reactions or localized organization of particles suspended in solution. Thus, there is interest in both the controlled breakup of liquid threads, the dynamics of such a thread, which can fold or buckle, and application of these processes to fabricating new materials. Not surprisingly the themes mentioned in this short summary are just a small window into the myriad of ideas being investigated in the research world of small-scale flows that is the playground of micro- and nanofluidics.

We are grateful to all of the contributors for their efforts and to the referees, whose feedback has added value to every contribution. We hope you, as readers, will find benefit in the many ideas discussed in this Focus on Micro- and Nanofluidics, which represents a sampling of current activity, including experiment, simulation and theory, in this rapidly developing field.

Selected highlights

Pressure-driven DNA transport across an artificial nanotopography

Universal nanocolloid deposition patterns: can you see the harmonics of a Taylor cone?

Pattern formation during the evaporation of a colloidal nanoliter drop: a numerical and experimental study

To browse the focus issue in full, click here.