Recently, researchers from the Institute of Physics, Academia Sinica, in Taiwan, have proposed and demonstrated a reliable approach for producing nanoparticle devices. The circuits fabricated by the team contain a single ZnO particle embedded in a nanopore structure and exhibit photovoltaic functionality with a fill factor of 48%.

Suits most materials

What’s more, the method provides a route for making electronic devices containing a single nanoparticle of virtually any material. Based on the device fabrication process, the team is now developing a technique that allows the chemical potential of an embedded nanoparticle to be tuned by a surrounding gate electrode. In this way, field-effect transistors containing a single semiconductor nanoparticle could be reproducibly constructed.

In a related project, the scientists have also used the manipulation probes to pick up selected objects such as nanowires, nanotubes and graphene sheets and place them on top of pre-prepared electrodes crossing the holes on a chip. This would allow for correlated structural TEM inspection and rigorous electrical characterization on the same specimen.

More details can be found in the journal Nanotechnology.