In a recent study, researchers from Hefei University of Technology in China have reported a new kind of high-performance non-volatile memory device induced by interfacial Al oxide. They found that the Al/AlOX/CdTe nanowire/Cu/Au junction exhibited a pronounced hysteresis phenomenon, which allows data to be written and erased.

The scientists believe that the devices are highly suitable for future memory applications thanks to the excellent reproducibility and scalability of the structures.

"The conductance ratio is the highest value ever reported and the retention time is comparable to other nanostructure-based memory devices," commented team member Chao Xie. "What’s more, flexible memory devices assembled on PET substrates show comparable device characteristics under bending, suggesting the potential for applications in flexible electronics."

To interpret the working mechanism of the present memory device, the scientists proposed a new interfacial oxide layer theory, which was verified by controlled experiments and X-ray photoemission spectroscopy (XPS) analysis. According to this model, the oxygen vacancies in the oxide layer are capable of trapping or releasing electrons when subject to different bias voltages.

Lin-Bao Luo, who leads the group, said that the team is now trying to improve device performance by examining other interfacial oxides and optimizing the configuration.

The observed oxide layer induced memory behaviour will not only help to provide further insight into the working mechanism, but also facilitate the development of new types of memory device with high performance.

Additional details can be found in the Journal Nanotechnology 24 355203

Further reading

Electrically 'tunable' memristors (Aug 2010)
Nanolayers improve performance of phase change memory (Jun 2011)
Resistive memory: how small can you go? (Jun 2011)